3.315 \(\int \frac {(d \sec (e+f x))^{7/2}}{\sqrt {b \tan (e+f x)}} \, dx\)

Optimal. Leaf size=178 \[ \frac {3 d^3 \sqrt {b \sin (e+f x)} \sqrt {d \sec (e+f x)} \tan ^{-1}\left (\frac {\sqrt {b \sin (e+f x)}}{\sqrt {b}}\right )}{4 \sqrt {b} f \sqrt {b \tan (e+f x)}}+\frac {3 d^3 \sqrt {b \sin (e+f x)} \sqrt {d \sec (e+f x)} \tanh ^{-1}\left (\frac {\sqrt {b \sin (e+f x)}}{\sqrt {b}}\right )}{4 \sqrt {b} f \sqrt {b \tan (e+f x)}}+\frac {d^2 \sqrt {b \tan (e+f x)} (d \sec (e+f x))^{3/2}}{2 b f} \]

[Out]

3/4*d^3*arctan((b*sin(f*x+e))^(1/2)/b^(1/2))*(d*sec(f*x+e))^(1/2)*(b*sin(f*x+e))^(1/2)/f/b^(1/2)/(b*tan(f*x+e)
)^(1/2)+3/4*d^3*arctanh((b*sin(f*x+e))^(1/2)/b^(1/2))*(d*sec(f*x+e))^(1/2)*(b*sin(f*x+e))^(1/2)/f/b^(1/2)/(b*t
an(f*x+e))^(1/2)+1/2*d^2*(d*sec(f*x+e))^(3/2)*(b*tan(f*x+e))^(1/2)/b/f

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 178, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {2613, 2616, 2564, 329, 212, 206, 203} \[ \frac {d^2 \sqrt {b \tan (e+f x)} (d \sec (e+f x))^{3/2}}{2 b f}+\frac {3 d^3 \sqrt {b \sin (e+f x)} \sqrt {d \sec (e+f x)} \tan ^{-1}\left (\frac {\sqrt {b \sin (e+f x)}}{\sqrt {b}}\right )}{4 \sqrt {b} f \sqrt {b \tan (e+f x)}}+\frac {3 d^3 \sqrt {b \sin (e+f x)} \sqrt {d \sec (e+f x)} \tanh ^{-1}\left (\frac {\sqrt {b \sin (e+f x)}}{\sqrt {b}}\right )}{4 \sqrt {b} f \sqrt {b \tan (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[(d*Sec[e + f*x])^(7/2)/Sqrt[b*Tan[e + f*x]],x]

[Out]

(3*d^3*ArcTan[Sqrt[b*Sin[e + f*x]]/Sqrt[b]]*Sqrt[d*Sec[e + f*x]]*Sqrt[b*Sin[e + f*x]])/(4*Sqrt[b]*f*Sqrt[b*Tan
[e + f*x]]) + (3*d^3*ArcTanh[Sqrt[b*Sin[e + f*x]]/Sqrt[b]]*Sqrt[d*Sec[e + f*x]]*Sqrt[b*Sin[e + f*x]])/(4*Sqrt[
b]*f*Sqrt[b*Tan[e + f*x]]) + (d^2*(d*Sec[e + f*x])^(3/2)*Sqrt[b*Tan[e + f*x]])/(2*b*f)

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2564

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 2613

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a^2*(a*Sec[
e + f*x])^(m - 2)*(b*Tan[e + f*x])^(n + 1))/(b*f*(m + n - 1)), x] + Dist[(a^2*(m - 2))/(m + n - 1), Int[(a*Sec
[e + f*x])^(m - 2)*(b*Tan[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && (GtQ[m, 1] || (EqQ[m, 1] && EqQ[
n, 1/2])) && NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n]

Rule 2616

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(a^(m + n)*(b
*Tan[e + f*x])^n)/((a*Sec[e + f*x])^n*(b*Sin[e + f*x])^n), Int[(b*Sin[e + f*x])^n/Cos[e + f*x]^(m + n), x], x]
 /; FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[n + 1/2] && IntegerQ[m + 1/2]

Rubi steps

\begin {align*} \int \frac {(d \sec (e+f x))^{7/2}}{\sqrt {b \tan (e+f x)}} \, dx &=\frac {d^2 (d \sec (e+f x))^{3/2} \sqrt {b \tan (e+f x)}}{2 b f}+\frac {1}{4} \left (3 d^2\right ) \int \frac {(d \sec (e+f x))^{3/2}}{\sqrt {b \tan (e+f x)}} \, dx\\ &=\frac {d^2 (d \sec (e+f x))^{3/2} \sqrt {b \tan (e+f x)}}{2 b f}+\frac {\left (3 d^3 \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}\right ) \int \frac {\sec (e+f x)}{\sqrt {b \sin (e+f x)}} \, dx}{4 \sqrt {b \tan (e+f x)}}\\ &=\frac {d^2 (d \sec (e+f x))^{3/2} \sqrt {b \tan (e+f x)}}{2 b f}+\frac {\left (3 d^3 \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {x} \left (1-\frac {x^2}{b^2}\right )} \, dx,x,b \sin (e+f x)\right )}{4 b f \sqrt {b \tan (e+f x)}}\\ &=\frac {d^2 (d \sec (e+f x))^{3/2} \sqrt {b \tan (e+f x)}}{2 b f}+\frac {\left (3 d^3 \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}\right ) \operatorname {Subst}\left (\int \frac {1}{1-\frac {x^4}{b^2}} \, dx,x,\sqrt {b \sin (e+f x)}\right )}{2 b f \sqrt {b \tan (e+f x)}}\\ &=\frac {d^2 (d \sec (e+f x))^{3/2} \sqrt {b \tan (e+f x)}}{2 b f}+\frac {\left (3 d^3 \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}\right ) \operatorname {Subst}\left (\int \frac {1}{b-x^2} \, dx,x,\sqrt {b \sin (e+f x)}\right )}{4 f \sqrt {b \tan (e+f x)}}+\frac {\left (3 d^3 \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}\right ) \operatorname {Subst}\left (\int \frac {1}{b+x^2} \, dx,x,\sqrt {b \sin (e+f x)}\right )}{4 f \sqrt {b \tan (e+f x)}}\\ &=\frac {3 d^3 \tan ^{-1}\left (\frac {\sqrt {b \sin (e+f x)}}{\sqrt {b}}\right ) \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}}{4 \sqrt {b} f \sqrt {b \tan (e+f x)}}+\frac {3 d^3 \tanh ^{-1}\left (\frac {\sqrt {b \sin (e+f x)}}{\sqrt {b}}\right ) \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}}{4 \sqrt {b} f \sqrt {b \tan (e+f x)}}+\frac {d^2 (d \sec (e+f x))^{3/2} \sqrt {b \tan (e+f x)}}{2 b f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 6.51, size = 136, normalized size = 0.76 \[ \frac {d^3 \sqrt {b \tan (e+f x)} \sqrt {d \sec (e+f x)} \left (2 \sqrt [4]{\tan ^2(e+f x)} \sec ^{\frac {3}{2}}(e+f x)-3 \tan ^{-1}\left (\frac {\sqrt {\sec (e+f x)}}{\sqrt [4]{\tan ^2(e+f x)}}\right )+3 \tanh ^{-1}\left (\frac {\sqrt {\sec (e+f x)}}{\sqrt [4]{\tan ^2(e+f x)}}\right )\right )}{4 b f \sqrt [4]{\tan ^2(e+f x)} \sqrt {\sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d*Sec[e + f*x])^(7/2)/Sqrt[b*Tan[e + f*x]],x]

[Out]

(d^3*Sqrt[d*Sec[e + f*x]]*Sqrt[b*Tan[e + f*x]]*(-3*ArcTan[Sqrt[Sec[e + f*x]]/(Tan[e + f*x]^2)^(1/4)] + 3*ArcTa
nh[Sqrt[Sec[e + f*x]]/(Tan[e + f*x]^2)^(1/4)] + 2*Sec[e + f*x]^(3/2)*(Tan[e + f*x]^2)^(1/4)))/(4*b*f*Sqrt[Sec[
e + f*x]]*(Tan[e + f*x]^2)^(1/4))

________________________________________________________________________________________

fricas [B]  time = 0.81, size = 782, normalized size = 4.39 \[ \left [-\frac {6 \, b d^{3} \sqrt {-\frac {d}{b}} \arctan \left (\frac {{\left (\cos \left (f x + e\right )^{3} - 5 \, \cos \left (f x + e\right )^{2} - {\left (\cos \left (f x + e\right )^{2} + 6 \, \cos \left (f x + e\right ) + 4\right )} \sin \left (f x + e\right ) - 2 \, \cos \left (f x + e\right ) + 4\right )} \sqrt {\frac {b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt {-\frac {d}{b}} \sqrt {\frac {d}{\cos \left (f x + e\right )}}}{4 \, {\left (d \cos \left (f x + e\right )^{2} - {\left (d \cos \left (f x + e\right ) + d\right )} \sin \left (f x + e\right ) - d\right )}}\right ) \cos \left (f x + e\right ) - 3 \, b d^{3} \sqrt {-\frac {d}{b}} \cos \left (f x + e\right ) \log \left (\frac {d \cos \left (f x + e\right )^{4} - 72 \, d \cos \left (f x + e\right )^{2} + 8 \, {\left (7 \, \cos \left (f x + e\right )^{3} - {\left (\cos \left (f x + e\right )^{3} - 8 \, \cos \left (f x + e\right )\right )} \sin \left (f x + e\right ) - 8 \, \cos \left (f x + e\right )\right )} \sqrt {\frac {b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt {-\frac {d}{b}} \sqrt {\frac {d}{\cos \left (f x + e\right )}} + 28 \, {\left (d \cos \left (f x + e\right )^{2} - 2 \, d\right )} \sin \left (f x + e\right ) + 72 \, d}{\cos \left (f x + e\right )^{4} - 8 \, \cos \left (f x + e\right )^{2} - 4 \, {\left (\cos \left (f x + e\right )^{2} - 2\right )} \sin \left (f x + e\right ) + 8}\right ) - 16 \, d^{3} \sqrt {\frac {b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt {\frac {d}{\cos \left (f x + e\right )}}}{32 \, b f \cos \left (f x + e\right )}, \frac {6 \, b d^{3} \sqrt {\frac {d}{b}} \arctan \left (\frac {{\left (\cos \left (f x + e\right )^{3} - 5 \, \cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right )^{2} + 6 \, \cos \left (f x + e\right ) + 4\right )} \sin \left (f x + e\right ) - 2 \, \cos \left (f x + e\right ) + 4\right )} \sqrt {\frac {b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt {\frac {d}{b}} \sqrt {\frac {d}{\cos \left (f x + e\right )}}}{4 \, {\left (d \cos \left (f x + e\right )^{2} + {\left (d \cos \left (f x + e\right ) + d\right )} \sin \left (f x + e\right ) - d\right )}}\right ) \cos \left (f x + e\right ) + 3 \, b d^{3} \sqrt {\frac {d}{b}} \cos \left (f x + e\right ) \log \left (\frac {d \cos \left (f x + e\right )^{4} - 72 \, d \cos \left (f x + e\right )^{2} - 8 \, {\left (7 \, \cos \left (f x + e\right )^{3} + {\left (\cos \left (f x + e\right )^{3} - 8 \, \cos \left (f x + e\right )\right )} \sin \left (f x + e\right ) - 8 \, \cos \left (f x + e\right )\right )} \sqrt {\frac {b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt {\frac {d}{b}} \sqrt {\frac {d}{\cos \left (f x + e\right )}} - 28 \, {\left (d \cos \left (f x + e\right )^{2} - 2 \, d\right )} \sin \left (f x + e\right ) + 72 \, d}{\cos \left (f x + e\right )^{4} - 8 \, \cos \left (f x + e\right )^{2} + 4 \, {\left (\cos \left (f x + e\right )^{2} - 2\right )} \sin \left (f x + e\right ) + 8}\right ) + 16 \, d^{3} \sqrt {\frac {b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt {\frac {d}{\cos \left (f x + e\right )}}}{32 \, b f \cos \left (f x + e\right )}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*sec(f*x+e))^(7/2)/(b*tan(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

[-1/32*(6*b*d^3*sqrt(-d/b)*arctan(1/4*(cos(f*x + e)^3 - 5*cos(f*x + e)^2 - (cos(f*x + e)^2 + 6*cos(f*x + e) +
4)*sin(f*x + e) - 2*cos(f*x + e) + 4)*sqrt(b*sin(f*x + e)/cos(f*x + e))*sqrt(-d/b)*sqrt(d/cos(f*x + e))/(d*cos
(f*x + e)^2 - (d*cos(f*x + e) + d)*sin(f*x + e) - d))*cos(f*x + e) - 3*b*d^3*sqrt(-d/b)*cos(f*x + e)*log((d*co
s(f*x + e)^4 - 72*d*cos(f*x + e)^2 + 8*(7*cos(f*x + e)^3 - (cos(f*x + e)^3 - 8*cos(f*x + e))*sin(f*x + e) - 8*
cos(f*x + e))*sqrt(b*sin(f*x + e)/cos(f*x + e))*sqrt(-d/b)*sqrt(d/cos(f*x + e)) + 28*(d*cos(f*x + e)^2 - 2*d)*
sin(f*x + e) + 72*d)/(cos(f*x + e)^4 - 8*cos(f*x + e)^2 - 4*(cos(f*x + e)^2 - 2)*sin(f*x + e) + 8)) - 16*d^3*s
qrt(b*sin(f*x + e)/cos(f*x + e))*sqrt(d/cos(f*x + e)))/(b*f*cos(f*x + e)), 1/32*(6*b*d^3*sqrt(d/b)*arctan(1/4*
(cos(f*x + e)^3 - 5*cos(f*x + e)^2 + (cos(f*x + e)^2 + 6*cos(f*x + e) + 4)*sin(f*x + e) - 2*cos(f*x + e) + 4)*
sqrt(b*sin(f*x + e)/cos(f*x + e))*sqrt(d/b)*sqrt(d/cos(f*x + e))/(d*cos(f*x + e)^2 + (d*cos(f*x + e) + d)*sin(
f*x + e) - d))*cos(f*x + e) + 3*b*d^3*sqrt(d/b)*cos(f*x + e)*log((d*cos(f*x + e)^4 - 72*d*cos(f*x + e)^2 - 8*(
7*cos(f*x + e)^3 + (cos(f*x + e)^3 - 8*cos(f*x + e))*sin(f*x + e) - 8*cos(f*x + e))*sqrt(b*sin(f*x + e)/cos(f*
x + e))*sqrt(d/b)*sqrt(d/cos(f*x + e)) - 28*(d*cos(f*x + e)^2 - 2*d)*sin(f*x + e) + 72*d)/(cos(f*x + e)^4 - 8*
cos(f*x + e)^2 + 4*(cos(f*x + e)^2 - 2)*sin(f*x + e) + 8)) + 16*d^3*sqrt(b*sin(f*x + e)/cos(f*x + e))*sqrt(d/c
os(f*x + e)))/(b*f*cos(f*x + e))]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (d \sec \left (f x + e\right )\right )^{\frac {7}{2}}}{\sqrt {b \tan \left (f x + e\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*sec(f*x+e))^(7/2)/(b*tan(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate((d*sec(f*x + e))^(7/2)/sqrt(b*tan(f*x + e)), x)

________________________________________________________________________________________

maple [C]  time = 0.65, size = 758, normalized size = 4.26 \[ \frac {\left (6 i \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}\, \EllipticF \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right ) \left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right )-3 i \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}\, \EllipticPi \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right ) \left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right )-3 i \left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right ) \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}\, \EllipticPi \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )+3 \left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right ) \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}\, \EllipticPi \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-3 \left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right ) \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}\, \EllipticPi \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )+2 \cos \left (f x +e \right ) \sqrt {2}-2 \sqrt {2}\right ) \left (\frac {d}{\cos \left (f x +e \right )}\right )^{\frac {7}{2}} \sin \left (f x +e \right ) \cos \left (f x +e \right ) \sqrt {2}}{8 f \left (-1+\cos \left (f x +e \right )\right ) \sqrt {\frac {b \sin \left (f x +e \right )}{\cos \left (f x +e \right )}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*sec(f*x+e))^(7/2)/(b*tan(f*x+e))^(1/2),x)

[Out]

1/8/f*(6*I*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x+e))^(1/2)*(-I*
(-1+cos(f*x+e))/sin(f*x+e))^(1/2)*EllipticF(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))*cos(f*
x+e)^2*sin(f*x+e)-3*I*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x+e))
^(1/2)*(-I*(-1+cos(f*x+e))/sin(f*x+e))^(1/2)*EllipticPi(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2-1/2
*I,1/2*2^(1/2))*cos(f*x+e)^2*sin(f*x+e)-3*I*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-s
in(f*x+e))/sin(f*x+e))^(1/2)*(-I*(-1+cos(f*x+e))/sin(f*x+e))^(1/2)*EllipticPi(((I*cos(f*x+e)-I+sin(f*x+e))/sin
(f*x+e))^(1/2),1/2+1/2*I,1/2*2^(1/2))*cos(f*x+e)^2*sin(f*x+e)+3*cos(f*x+e)^2*sin(f*x+e)*((I*cos(f*x+e)-I+sin(f
*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x+e))^(1/2)*(-I*(-1+cos(f*x+e))/sin(f*x+e))^(1/2)
*EllipticPi(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2-1/2*I,1/2*2^(1/2))-3*cos(f*x+e)^2*sin(f*x+e)*((
I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x+e))^(1/2)*(-I*(-1+cos(f*x+e
))/sin(f*x+e))^(1/2)*EllipticPi(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2+1/2*I,1/2*2^(1/2))+2*cos(f*
x+e)*2^(1/2)-2*2^(1/2))*(d/cos(f*x+e))^(7/2)*sin(f*x+e)*cos(f*x+e)/(-1+cos(f*x+e))/(b*sin(f*x+e)/cos(f*x+e))^(
1/2)*2^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (d \sec \left (f x + e\right )\right )^{\frac {7}{2}}}{\sqrt {b \tan \left (f x + e\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*sec(f*x+e))^(7/2)/(b*tan(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((d*sec(f*x + e))^(7/2)/sqrt(b*tan(f*x + e)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (\frac {d}{\cos \left (e+f\,x\right )}\right )}^{7/2}}{\sqrt {b\,\mathrm {tan}\left (e+f\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d/cos(e + f*x))^(7/2)/(b*tan(e + f*x))^(1/2),x)

[Out]

int((d/cos(e + f*x))^(7/2)/(b*tan(e + f*x))^(1/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*sec(f*x+e))**(7/2)/(b*tan(f*x+e))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________